
Introduction

Every day, two million tons of industrial and 
agricultural waste are discharged globally into water, in 
which the estimated amount of wastewater produced 
annually is about 1,500 [1]. The National Geographic 
Portal [2] has reported that developing countries produce 

70% of industrial wastes that are dumped untreated  
into waters, and that an average of 99 million pounds 
(45 million kg) of fertilizers and chemicals are used 
each year. The deterioration of water quality of rivers 
is due to growing population, rapid urban development, 
anthropogenic inputs (e.g., municipal and industrial 
wastewater discharges, agricultural runoff), natural 
processes (e.g., chemical weathering and soil erosion) 
[3-5], human and ecological health, drinking water 
availability, and further economic development [6-8]. 
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Abstract
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Since 2008 Malacca state has served as an official 
historical tourism center [9]. Nevertheless, increased 
development and urbanization in certain areas within the 
Malacca River basin has led to undesirable effects toward 
natural resources such as river water quality. The Malaysian 
Department of Environment [10] has classified the Malacca 
as class III, which means slightly polluted and which can 
adversely affect aquatic species, even leading to death [11-
16]. The degradation of water quality has altered species 
composition and decreased the overall health of aquatic 
communities within the river basin [17-19]. Therefore, 
a practical and reliable assessment of water quality is 
required for sustainable water resource use with respect 
to ecosystem health and social development concerning 
prevention and control of water pollution [20-21].

Techniques that include regression analysis, 
discriminant analysis (DA), hierarchical cluster analysis 
(HCA), and principle component analysis (PCA) are the 
best for data classification and modeling so as to avoid 
misinterpretation of environmental monitoring data [22]. 
These techniques have advantages of visualization of large 
amounts of raw analytical measurements and extraction of 
additional information about possible sources of pollution 
[23]. Environmentric techniques have also been applied 
to characterize and evaluate river water quality as well 
as identifying spatial variation caused by natural and 
anthropogenic factors [24-25]. Hence, the increase volume 
of literature on environmetric techniques and applications 
have proven that HCA, DA, and PCA are practical in 
various types of hydrochemistry data [26-28]. HCA 
provides an average of the clusters made by individual 
participants that represent the result of the group as a whole 
[22, 29]. HCA organizes observation into discrete classes 
or groups such that within a group similarity is maximized 
and among-group similarity is minimized according to 
some objective criteria [30]. It assesses the relationship 
within a single set of variables where no attempt is made 
to define the relationship between a set of independent 
variables and one or more dependent variables, etc. [31]. 
Meanwhile, DA is able to discriminate variables between 
two or more naturally occurring groups [4]. DA is used  
to identify water quality variables responsible for spatial 
and temporal variations in river water quality [24, 32]. 
PCA describes the correlated variables by reducing the 
numbers of variables and explaining the same amount 
of variance with fewer variables (principle components). 
In others words, the goals of PCA are to extract the most 
important information from the data table, compress 
the size of the data set by keeping only the important 
information, simplify the description of the data set, and 
analyze the structure of the observations and the variables 
[33]. 

Therefore, this study was performed to evaluate 
the spatial variations in river water quality data using 
environmetric techniques by incorporating HCA, DA, and 
PCA. HCA was used to classify 20 variables into clusters 
with respect to the nine sampling stations. Furthermore, 
DA was used to identify significant variables that have 
discriminant patterns between clusters provided from HCA 

analysis, and PCA was applied to normalize the 20 variables 
separately based on the clustering in HCA technique and 
to obtain the pollutant sources based on spatial variation. 
Hence, the output of environmetric techniques via HCA, 
DA, and PCA within the river basin will provide valuable 
insights on spatial variation of pollutants and areas needing 
attention in future environmental management plans [34]. 
In fact, a catchment-scale water quality study would  
be essential for pollutant characterization and to under-
stand the extent to which the water has been contaminated 
[35-36].

Materials and Methods

Study Area

Malacca state is located southwest of peninsular 
Malaysia with geographical coordinates of 2°23’16.08”N 
to 2°24’52.27”N and longitude of 102°10’36.45”E to 
102°29’17.68”E. The increasing local population has 
led to increasing public facilities like transportation, 
healthcare, accommodation, sewage, and water supply 
services [37]. However, rapid development in the Strait 
of Malacca has caused several changes, especially from 
a land-use perspective. Historically, the Strait of Malacca 
has become the busiest shipping route between China 
and India, causing most local citizens to live nearer the 
Malacca River to gain benefits like water and food sources, 
transportation, and purchase of imported materials or 
items from abroad. Land use has continuously developed 
until today, which is in line with the vision and mission of 
a sustainable tourism sector for the state. Indirectly, this 
has contributed to economic growth, political changes, 
and strengthening social and cultural relationships, but 
has also created environmental consequences – especially 
regarding water quality of the Malacca River.

Field Sampling 

A total of nine sampling stations were chosen along 
the Malacca River, where every station is located at the 
confluence of each sub-basin and the Malacca River 
within the river basin (Fig. 1). The locations of sampling 
stations were recorded using a GPS device. The collection 
of water quality samples was carried out monthly from 
January to December 2015. The purpose of primary data 
collection was to obtain recent water quality data and for 
field data verification. Additionally, secondary data from 
2001 to 2012 was obtained from Malaysia’s Department 
of the Environment. The river water quality data consists 
of the physico-chemical parameters: pH, temperature, 
electrical conductivity (EC), salinity, turbidity, total 
suspended solids (TSS), dissolved solids (DS), dissolved 
oxygen (DO), biological oxygen demand (BOD), chemical 
oxygen demand (COD), ammoniacal-nitrogen (NH3-N), 
trace elements (i.e., mercury, cadmium, chromium, 
arsenic, zinc, lead, and iron), and biological parameters  
(i.e., Escherichia coliform and total coliform). 
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Water Quality Analysis

In-situ measurements include measurement of pH, 
turbidity, temperature, EC, TDS, salinity, and DO. pH was 
measured using a SevenGo Duo pro probe (Mettler Toledo 
AG), turbidity using a portable turbidity meter (Handled 
Turbidimeter Hach 2100), and temperature, EC, DS, 
salinity, and DO using a multi-parameter probe (Orion 
Star Series Portable Meter). On the other hand, NH3N 
was analyzed using a spectrophotometer at a specific 
wavelength using Hach Method 8038, while COD was 
measured using the APHA 5220B open reflux technique, 
BOD using APHA 5210B (or Hach Method 8043), and 
TSS using the APHA 2540D method. Both E-coli and 
total coliform were analyzed using the membrane filtration 
method based on APHA 9221B. For trace metal analysis, 
water samples of 500 mL were filtered through a 0.45 µm 
Whatman filter paper and acidified with nitric acid (HNO3) 
to pH lower than 2, and analyzed using inductive-coupled 
plasma-mass spectrometry (ICP-MS, ELAN DRC-e, 
Perkin Elmer, which required 40 MHz in frequency and 
1,600 watts for conducting the analysis).

Quality Assurance and Quality Control

Before conducting the laboratory analysis, the labo-
ratory apparatus and polyethylene bottles were washed 
using 5% (v/v) of nitric acid and soaking overnight to 

remove contaminants and traces of cleaning reagent [38]. 
On the other hand, for BOD analysis the BOD bottles were 
wrapped with aluminum foil. The river water samples 
were preserved using 1% (v/v) nitric acid (HNO3) for trace 
metals and analyzed within one month. Each sample was 
analyzed in triplicate before calculating the mean value, 
and standard deviation (SD) was used as an indication of 
the precision of each parameter measured with less than 
20%. All the probe meters and instruments used were first 
calibrated prior to analysis. In all cases, the standards and 
blanks were treated in the same way as the representative 
river water samples to minimize matrix interference 
during analysis. Accuracy of ICP-MS performance is 
based on the diluting preparation using ICP Multi-Element 
Mixed Standard III (Perkin Elmer) into concentration with 
the same acid mixture used for sample dissolution. The 
recovery of samples for all target elements fell within the 
standard requirements (90-110%).

Data Analysis

River water quality data were analyzed using the 
Statistical Package for Social Sciences version 19 (SPSS 
19) for descriptive analysis and environmetric techniques 
using HCA, DA, and PCA. 

Hierarchical Cluster Analysis

HCA has an advantage of sorting different objects 
into the same group based on similarities and associations 
between the objects, which involves several procedures:
1.  Ward’s method, which uses variance analysis to 

evaluate the distance between clusters with minimized 
sum of squares (SS) for any two clusters that are 
formed at each step [24, 39].

2.  Measuring similarity by squared Euclidean distance, 
which is to provide the similarity between two samples 
and a distance that can be represented by differences 
between analytical values from the samples [24, 32, 
39].

3.  Results from dendrogram that have the ability to 
group high similarity with small distances between 
clusters while dissimilarity between groups is 
represented by the maximum of all possible distances 
between clusters [40]. In this study, HCA was 
employed to investigate the grouping of the sampling 
sites (spatial).

Discriminant Analysis

Discriminant analysis determines variables that 
discriminate between two or more groups or clusters. It 
constructs a discriminant function (DF) for each group 
[41], which can be defined using:

              (1)

Fig. 1. Map of sampling locations along the Malacca River.
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…where i is the number of groups (G), ki is the constant 
inherent to each group, n is the number of parameters 
used to classify a set of data into a given group, and wij 
is the weight coefficient assigned by DF analysis (DFA) 
to a given parameter (Pij). In this study, DA was used 
to define whether the mean of variables differ within 
the groups and the variables will be used to predict the 
group pattern. Based on the grouping of HCA results, 
the raw data are applied into DA using standard, forward 
stepwise, and backward stepwise modes to develop the 
DFs in evaluating spatial variations of river water quality. 
Generally, the stations (spatial) are assigned as dependent 
variables (referred to as grouping), and all parameters are 
independent variables.

Principal Components Analysis

PCA has the ability to provide information on most 
significant parameters due to spatial and temporal 
variations that define the whole data set by excluding 
less significant parameters with minimum loss of original 
information [4, 24, 32]. PCA can be explained as:

(2)

…where z is the component score, a is component loading, 
x is the measured value of the variable, I is the component 
number, j is the sample number, and m is the total number 
of variables. General procedures used in PCA are: 1) the 
hypothesis in an original data group are then reduced to 
dominant components or factors (source of variation) that 
influence the observed data variance and 2) the whole data 
set is extracted through eigenvalues and eigenvectors from 
the square matrix produced by multiplying the data matrix 
[42]. Eigenvalues greater than 1 are considered significant 
enough [43] to perform a new group of variables, namely 
varimax factors (VFs). VF coefficients that have a 
correlation greater than 0.75 are considered “strong,” 0.75 
to 0.50 as “moderate,” and 0.50 to 0.30 as “weak” [44] 
(only factor loadings above 0.6 were taken into account). 
In this study, PCA was applied to the normalized data set 
(20 variables) separately based on different spatial regions 
obtained from the HCA technique.

Results and Discussion

The mean and standard deviation values of Malacca 
River water quality data for physico-chemical and 
biological parameters and the trace elements from 2001 
to 2015 are presented in Table 2. Table 2 indicates that 
most physico-chemical parameters are in class 1, such 
as temperature (S1 to S9), salinity (S4 to S6 and S8 to 
S9), electrical conductivity (S2 to S6 and S8 to S9), 
and dissolved solids (S3 to S6 and S8 to S9) (Table 1). 
However, there are some stations that continue to be 
polluted with respect to turbidity (S1 to S6) from class 2 
to class 5, and total suspended solid (S2 to S6) from class 

1 to class 3; while some stations are classified as being 
less polluted with respect to dissolved solids (S1 to S3) 
and salinity (S1 to S4) from class 5 to class 1 (Table 1). 
The possible causes of changes in increasing turbidity and 
total suspended solids are the increasing land clearing for 
agricultural activities, while decreasing in dissolved solids 
and salinity are potentially due to reduction from big to 
small-scale animal husbandry activities. Meanwhile, 
parameters like chemical oxygen demand (S1 to S7), 
biological oxygen demand (S1 to S7), and dissolved 
oxygen (S1 to S3 and S7 to S8) were mostly in class 3. 
There was an increasing level of pollution with respect to 
ammoniacal nitrogen (S6 to S8) from class 2 to class 5, 
but improved levels in station 2 to station 4 from class 5 
to class 3. The reason for this is because of the changes 
in land use, i.e., residential activities that change from 
upstream and the middle parts to the downstream part of 
the river. All the trace metals are in class 1, but biological 
parameters are classified as class 5 (Tables 1 and 2). 

HCA results showed that two clusters were identified 
from the nine sampling stations (Fig. 2). Cluster 1 
consists of S1, S2, S7, and S8, while cluster 2 consists 
of S3, S4, S5, S6, and S9. The results showed that S1, 
S2, S7, and S8 are considered moderate-pollution sources 
(MPS), while S3, S4, S5, S6, and S9 are considered high-
pollution sources (HPS). The areas that constitute MPS 
are Kampung Kelemak sub-basin (S1), Kampung Sungai 
Petai sub-basin (S2), and Kampung Batu Berendam sub-
basin (S7), while the HPS are from Kampung Panchor 
sub-basin (S3), Kampung Harmoni Belimbing Dalam 
sub-basin (S4), Kampung Tualang sub-basin (S5), and 
Kampung Cheng sub-basin (S6). Based on land uses in 
the Malacca River basin, the potential sources of pollution 
within cluster 1 (MPS) result from the widely used land 
for agricultural activities and residential areas, while 
in cluster 2 (HPS) the sources may result from effluent 
discharge from sewage. 

Discriminant analysis (DA) was used to further 
evaluate the spatial variation of two main clusters 
resulting from HCA output. The results show that spatial 
classification for both clusters in standard mode are 
92% with 20 variables, forward stepwise are 81% with 
six variables, and backward stepwise are 85% with 12 
variables. Therefore, the mode shows that temperature, 
salinity, coliform, EC, DO, BOD, COD, As, Hg, Cd, Cr, 
and Zn are found to be the most significant parameters 
having high variation in terms of their spatial distribution. 
The results indicate that temperature, salinity, coliform, 
EC, DO, BOD, COD, Cr, and Zn in cluster 1 have higher 
values than in cluster 2 (except for As, Hg, and Cd, which 
have almost similar values in both clusters. Fig. 3 shows 
box and whisker plots of these water quality parameters 
for 13 years (2001 to 2012 and 2015).

Principal component analysis was applied to compare 
composition patterns between the water quality parameters 
and to determine the factors that influence the identified 
regions (clusters 1 and 2). In cluster 1, six PCs were obtain 
with eigenvalues larger than 1 with 54% of total variance, 
while cluster 2 indicated eight PCs with eigenvalues 
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more than 1 having 62% of total variance. Corresponding 
principal components, variable loadings, and variance are 
explained based on Table 3.

In cluster 1 (Fig. 4a), principal component 1 loadings 
with 17.3% of total variance have strong positive 
loadings on DS, EC, and salinity, but moderate negative 
loadings of NH3N. The existence of some physical 
parameter contaminations can be connected with the 
erosion of riverbanks due to dredging in the river and 
the agricultural runoff from non-point source pollution 
[45]. Meanwhile, salinity and NH3N pollution can be 
connected with pesticide usage for agriculture in oil palm 
rubber plantations and animal husbandry (chicken, cow, 
and goat), which are carried out by some local residents 
along the Malacca River. This condition has resulted in 
non-point source pollution that leads to surface runoff and 
water flows into the nearby sub-basin before entering the 
river. On the other hand, principal component 2 loadings 
explain strong positive loadings on turbidity but moderate 

Table 1. National Water Quality Standards for Malaysia (source: DOE Malaysia report, 2012).

Category Unit Class
I IIA IIB III IV V

pH - 6.5-8.5 6 – 9 6 – 9 5 – 9 5 – 9 -

Temp ºC - Normal+2ºC - Normal+2ºC - -

Sal % 0.5 1 - - 2 -

EC µS/cm 1000 1000 - - 6000 -

TSS mg/L 25 50 50 150 300 300

DS mg/L 500 1000 - - 4000 -

Tur NTU 5 50 50 - - -

BOD mg/L 1 3 3 6 12 >12

COD mg/L 10 25 25 50 100 >100

DO mg/L 7 5 – 7 5 – 7 3 – 5 < 3 <1

NH3N mg/L 0.1 0.3 0.3 0.9 2.7 >2.7

As mg/L - 0.05 0.05 0.4 (0.05) 0.1 -

Hg mg/L - 0.001 0.001 0.004(0.0001) 0.002 -

Cd mg/L - 0.01 0.01 0.01 (0.001) 0.01 -

Cr mg/L - 0.05 0.05 1.4 (0.05) 0.1 -

Pb mg/L - 0.05 0.05 0.02 (0.01) 5 -

Zn mg/L - 1 1 3.4 0.8 -

Fe mg/L - 1 1 1 1(leaf)5(others) -

Total 
Coliform

count/100mL 100 5000 5000 5000(20000) 5000(20000) >50000

Ecoli count/100mL 10 5000 5000 50000 50000 >50000

Tur means Turbidity; DS means Dissolved Solid; Con means Electrical Conductivity; Sal means Salinity; Temp means Temperature; 
DO means Dissolved Oxygen; BOD means Biological Oxygen Demand; COD means Chemical Oxygen Demand; TSS means Total 
Suspended Solids; pH means Acidic or Basic water; NH3N means Ammoniacal Nitrogen; E coli means Escherichia Coliform; Coli 
means Coliform; As means Arsenic; Hg means Mercury; Cd means Cadmium; Cr means Chromium; Pb means Lead; Zn means 
Zinc; Fe means Iron.

Fig. 2. Hierarchical cluster analysis (HCA) using the Ward 
linkage method to generate a dendrogram.
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positive loadings on TSS, with a total variance of 8.4%. 
This can be related to soil erosion – especially interruption 
from human activities toward hydrologic modifications 
(such as dredging, water diversions, and channelization) 
causing disruption in the river [11]. A small percentage of 
discharge from urban development areas – including land 
clearings [46] and erosion of road edges due to surface 
runoff [47] – can also happen within residential areas close 
to urban areas. Principal component 3 shows moderate 
positive loadings on COD of 8.1% of total variance, 

which is usually related to the discharge of municipal 
wastes [25]. These results from residential areas located 
within the Kampung Batu Berendam sub-basin, Kampung 
Kelemak sub-basin, and Kampung Sungai Petai sub-
basin. Principal component 4 loadings indicate that 8% of 
total variance have moderately positive DO loadings and 
moderately negative E. coli loadings. The existence of E. 
coli can originate from animal husbandry and municipal 
wastes. Principal component 5 loadings described 6.1% 
of total variance being moderately negative on Cd. The 

Table 2. Mean (and standard deviation) values of water quality data along the Malacca River, 2001-15 (n = 20).

Category Unit S1 S2 S3 S4 S5 S6 S7 S8 S9

pH -
Mean
SD

7.14
0.44

6.98
0.49

6.78
0.49

6.92
0.45

6.91
0.38

6.88
0.40

7.18
0.44

7.00
0.44

6.85
0.36

Temp ºC
Mean
SD

28.62
1.33

29.03
1.72

28.99
1.74

28.82
1.72

28.31
1.49

28.32
1.52

28.86
1.37

29.07
1.67

28.33
1.33

Sal %
Mean
SD

16.14
12.15

1.47
2.86

0.95
1.89

0.09
0.17

0.04
0.02

0.04
0.02

16.13
17.82

0.34
1.38

0.04
0.018

EC µS/cm
Mean
SD

22968.82
17163.09

964.68
1538.90

867.89
1504.59

124.10
89.59

107.13
47.17

182.12
1004.82

23004.56
16578.12

733.15
2603.44

173.63
316.07

TSS mg/L
Mean
SD

66.12
65.09

41.27
54.61

91.72
108.28

133.45
198.42

162.22
204.51

201.95
217.57

85.19
77.23

43.58
41.34

149.10
191.06

DS mg/L
Mean
SD

13709.49
10390.65

828.52
1385.04

387.66
612.81

74.49
94.79

48.17
16.06

50.56
33.51

12135.32
10677.17

494.62
1811.15

59.30
61.52

Tur NTU
Mean
SD

72.24±
81.32

63.78
80.88

259.29
301.95

167.16
215.62

203.20
287.67

239.52
277.92

59.84
54.89

111.83
121.98

187.00
253.93

BOD mg/L
Mean
SD

5.55
3.69

8.94
5.50

6.27
4.64

3.58
1.94

3.63
2.13

4.10
2.19

5.72
3.79

9.46
4.44

3.75
2.26

COD mg/L
Mean
SD

44.63
21.38

45.19
20.53

33.97
11.89

25.76
11.58

26.26
11.27

26.24
10.19

40.28
21.17

51.44
19.21

25.64
10.22

DO mg/L
Mean
SD

3.68
1.65

3.61
2.10

4.76
1.83

6.00
1.16

6.39
0.82

10.41
50.10

3.97
1.51

4.64
2.59

6.33
0.70

NH3N mg/L
Mean
SD

2.42
1.90

4.47
2.16

2.60
2.24

0.48
0.64

0.31
0.35

0.28
0.27

2.16
1.67

4.56
2.30

0.41
0.36

As mg/L
Mean
SD

0.01
0.03

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.02
0.05

0.00
0.00

0.00
0.00

Hg mg/L
Mean
SD

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

Cd mg/L
Mean
SD

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.01
0.00

0.00
0.00

Cr mg/L
Mean
SD

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

Pb mg/L
Mean
SD

0.01
0.00

0.01
0.00

0.01
0.00

0.01
0.00

0.01
0.00

0.01
0.00

0.01
0.01

0.01
0.00

0.01
0.00

Zn mg/L
Mean
SD

0.05
0.04

0.03
0.02

0.03
0.02

0.03
0.03

0.04
0.09

0.04
0.03

0.04
0.03

0.04
0.03

0.03
0.03

Fe mg/L
Mean
SD

0.19
0.29

0.41
0.45

0.53
0.48

0.77
0.59

0.83
0.58

0.77
0.61

0.14
0.24

0.52
0.53

0.84
0.61

Total 
Coliform count/100mL

Mean
SD

227798.72
335116.17

201677.05
355626.54

145835.77
227435.27

136941.03
357839.14

121105.13
205600.13

137667.31
190798.06

218566.67
699525.07

199536.79
280631.55

92893.59
84720.20

Ecoli count/100mL
Mean
SD

59652.63
71282.59

38655.77
49068.00

19718.63
28255.10

10639.62
30401.26

11399.97
19905.04

22899.17
39283.23

30401.30
41822.87

42620.19
54646.54

15029.76
19584.80

Tur means Turbidity; DS means Dissolved Solid; Con means Electrical Conductivity; Sal means Salinity; Temp means Temperature; DO means 
Dissolved Oxygen; BOD means Biological Oxygen Demand; COD means Chemical Oxygen Demand; TSS means Total Suspended Solids; pH means 
Acidic or Basic water; NH3N means Ammoniacal Nitrogen; E coli means Escherichia Coliform; Coli means Coliform; As means Arsenic; Hg means 
Mercury; Cd means Cadmium; Cr means Chromium; Pb means Lead; Zn means Zinc; Fe means Iron; Max means Maximum; Min means Minimum; 
SD means Standard Deviation; S1 to S9 means Station 1 to Station 9.
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presence of Cd is potentially from agricultural activity 
through fertilizer applications and leachate from a nearby 
dumpsite [48]. Based on site observations, we found that 
there is a dumpsite located near the river in close vicinity 
to the residential area. Lastly, principal component 6 
showed moderate positive loadings of Pb and Zn total 
variance of 6%. The connection with Zn pollution may be 
due to the large number of houses and building areas that 
use metallic roofs coated with Zn, which can be mobilized 
into the atmosphere and waterways when in contact with 
acid rain or smog [25], while the existence of Pb can be 
attributed to agricultural activities [42].

In the case of cluster 2 (Fig. 4b), principal component 
1 indicated 15.3% of total variance for strong positive 
loadings on DO, EC, and salinity, and moderately positive 
loadings of NH3N. Principal component 2 loadings 
showed strong positive turbidity and TSS loadings of 
9.2%. As discussed earlier, the principal component 1 and 
2 loadings for DO, EC, turbidity, and TSS originate from 
riverbank erosion and interruption of human activities 
toward hydrological modifications, causing the river to 
be polluted through the Kampung Panchor sub-basin. 
Meanwhile, salinity and NH3N can be connected with 
effluent from sewage treatment plants that are located 

Fig. 3. Plots of some parameters separated from DA associated with water quality data of the Malacca River.
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within the Kampung Harmoni Belimbing Dalam sub-basin 
near the river. Meanwhile, principal component 3 has 
moderately positive loading on BOD and COD, with total 
variance of 7.6%. This can be related to anthropogenic 
sources and possibly comes from point source pollution 
like sewage treatment plants [25, 35]. Next, principal 
component 4 loadings highlighted the moderately positive 
of E. coli and coliform loadings with total variance of 6.7%, 
which are strongly connected with raw and municipal 
sewage from domestic use, poultry farms, surface runoff, 
and discharge from wastewater treatment plants [25, 49]. 
Principal component 5 explained the moderately positive 
Fe loading with 6.6% total variance, which is suspected 
from industrial effluents. Principal component 6 explained 
the strong positive Cr loading with 6.1% total variance, 
which has a connection with urban storm runoff [50]. 
Principal component 7 explained the moderately positive 
of Cd loading with 5.4% total variance and being subjected 
to leachate from a dumpsite near the residential area [48]. 
Principal component 8 explained moderately positive of 
Hg loading with 5.1% total variance, which is suspected of 
being linked with plastic waste [51]. Generally, principal 
components 5-8 are subjected to point-source pollution 
that discharges directly into the river. 

Conclusion

Environmetric techniques (HCA, DA, and PCA) were 
applied to explore and identify the spatial variation and 
potential sources of pollution in the Malacca River. HCA 
categorized the nine sampling stations into two clusters, in 
which cluster 1 comprises S1, S2, S7, and S8 (indicating 
MPS), and cluster 2 is S3, S4, S5, S6, and S9 (indicating 
HPS). The MPS occurs within Alor Gajah sub-basin (S1 
and S2) and the middle part of Malacca Central sub-basin 
(S7 and S8), while the HPS are from the lower part of the 
Alor Gajah sub-basin and Malacca Central sub-basin. DA 
analysis showed that temperature, salinity, coliform, EC, 
DO, BOD, COD, As, Hg, Cd, Cr, and Zn are the most 
significant parameters reflecting the overall quality of the 
river water as determined from the backward stepwise 
mode. PCA showed that six components with 54% of 
total variance were extracted in cluster 1, while eight 
components with 62% of total variance were extracted 
in cluster 2. The major sources of pollution come from 
agricultural and residential areas along the Malacca, 
as well as from sewage treatment plants and industrial 
activities. 

This study has provided useful information in 
identifying the pollution sources. Identification of 
problematic areas through spatial variation output will 
help in proper management and understanding of the 
river water quality within the basin in the coming future. 
Additionally, the study has also provided a water quality 
database for future references in developing water and 
land use policies.
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